Bionic architecture is a contemporary movement that studies the physiological, behavioural, and structural adaptions of biological organisms as a source of inspiration for designing and constructing expressive buildings. These structures are designed to be self-sufficient, being able to structurally modify themselves in response to the fluctuating internal and external forces such as changes in weather and temperature.

Although this style of architecture has existed since the early 18th century period, the movement only began to mature in the early 21st century, following society’s growing concerns over climate change and global warming. These influences led to bionic architecture being used to draw society away from its anthropocentric environment, by creating landscapes that allow for the harmonious relationship between nature and society. This is achieved through having an in-depth understanding of the complex interactions between form, material, and structure in order to ensure that the building’s design supports a more sustainable environment. As a result, architects will rely upon the use of high-tech, artificial materials and techniques in order to conserve energy and materials, lower the consumption of construction and increase the practicality and reliability of their building structures

History and theoretical framework

The word ‘bionic architecture’ is derived from the Greek word ‘bios’ (life) as well as the English word ‘technics’ (to study). The term was originally used to describe the scientific trend of ‘transferring technologies into life-forms’. The term ‘bionic’ was first used in 1958 by U.S army colonel, Jack E. Steele and Soviet scientist, Otto Schmitt during an astronomer project that focused on research surrounding the field of robotics. In their project, both researchers initially recognised the concept of bionics as ‘the science of systems based on living creatures’. The idea was then expanded upon in 1997 by Janine Benyus, who coined the term ‘bio mimicry’ which referred to ‘the conscious emulation of nature’s genius’.

In 1974, Victor Glushkov published his book The Encyclopedia of Cybernetics, in which the study of bionics was applied to architectural thinking, and claimed that: In recent years, another new scientific direction has emerged in which bionics collaborates with architecture and building technics, namely architectural bionics. Using models of nature as samples, such as plant stems, living leaf nerve, eggshells, engineers create durable and beautiful architectural structures: houses, bridges, movie theatres, etc.” Later, J.S Lebedev published his book, Architecture and Bionic in 1983 and focused on the classical theory of architecture. It explored the possibility of studying the behaviours of different biological life forms and integrating these observations into building and design. He also theorised that bionic architecture would solve many problems associated with design and construction because it would allow for the ‘perfect protection’ through mimicking the same survival mechanisms used by organisms. By the late 1980s, architectural bionics finally emerged as a new branch of architectural science and practice. This then influenced the creation of the Central Research and Experimental Design Laboratory of Architectural Bionics, which became the main research centre for the field of bionic architecture in the USSR and a number of socialist countries.

Purpose

The built environment contributes to a majority of waste, material production, energy use and fossil fuel emissions. Thus, there is a responsibility to develop a more efficient and ecologically friendly construction design that still allows for daily activities in society to take place. This is achieved through the use of renewable energy sources such as solar power, wind energy, hydro power, and natural sources such as wood, soil and minerals.

In her book, Biomimicry: Innovation Inspired by Nature (1997), Janine Benyus formulated a set of questions that can be used to establish the level of bio mimicry within an architectural design. In order to ensure that an architectural design follows the principles of bionics, the answer must be ‘yes’ to the following questions:

  • Does its precedent relate to nature?
  • Is it solar-powered?
  • Is it self-sufficient?
  • Does it fit form to function?
  • Is it sustainable?
  • Is it beautiful?

Leave a Reply

Your email address will not be published. Required fields are marked *